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1 Abstract 
We implemented and parallelized an 

algorithm that plays N-dimensional 
“ultimate” or “meta” tic-tac-toe 
against itself (NxN tic-tac-toe boards 
of size NxN running at the same time). 
Our algorithm is based on alpha-beta 
pruning, which we tried parallelizing 
in two different ways using OpenMP. 
While we achieved modest speedup, we 
discovered that parallelizing such a 
heavily recursive algorithm is probably 
not worth the effort.  

2 Background 

2.1 Terminology 
● Meta-board: the board overall, 

which consists of NxN 
“mini-boards” that each are a 
tic-tac-toe game of size NxN. 

● Mini-board: one of the smaller 
tic-tac-toe boards inside the 
meta-board. Winning a mini-board 
is equivalent to placing your 
tile in that space on the 
meta-board. 

2.2 Rules 
“Ultimate” or “meta” tic-tac-toe is 

a variation of tic-tac-toe where there 
are NxN boards of size NxN running 

simultaneously. As shown in Figure 1, 
if player X plays in space (i, j) in 
the grid at (k, l) on the “meta-board,” 
that means that player O must play in 
the grid located at (i, j) on the 
meta-board.  If O is forced to play in 
a board that has already been won or 
tied, O can instead play anywhere on 
the meta-board. Winning a given small 
grid serves as placing a tile in the 
larger NxN meta-grid. The goal is to 
win the overall meta-grid. The game 
ends when someone wins or there are no 
legal moves to be made (i.e., every 
mini-board has been won or tied).  

2.3 Randomization 
In our version of the rules, player 

O always goes first in the following 
manner: a grid on the meta board is 
randomly selected and then a row and 
column within that board is randomly 
selected to place the first “O”. 
Because of this, the game has a 
different outcome every time, and the 
number of moves per game varies up to 
30 moves for a 3x3 board and 150 moves 
for a 5x5 board. This also gives a very 
slight advantage to player X, who has 
one more optimized move than player O 
has. 

2.4 Alpha-Beta Pruning 
Alpha-beta pruning is a more 

efficient optimization of the naive 
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minimax algorithm. Minimax is used to 
compute the optimal move in two-player 
adversarial games by assigning a score 
to the current game state using a 
heuristic, and then hypothetically 
making every possible move recursively.  

At each level, minimax alternates 
between the optimal move for the 
opponent and the least optimal move for 
the player. For each hypothetical move, 
alpha is updated to be the maximum of 
itself and the current move’s heuristic 
value if it is the maximizing player’s 
turn. Otherwise, it is the minimizing 
player’s turn, so beta is updated to be 
the minimum of itself and the current 
move’s heuristic value. Hypothetically 
making these moves generates a tree of 
possible paths the game could take. 
Alpha-beta pruning shrinks the problem 
size by immediately discarding 
suboptimal moves (for example, moves 
that would result in the player 
losing,) and therefore prunes entire 
subtrees. 

2.5 Heuristic  
To quantify the “goodness” of a 

particular board state for a particular 
player, we modified “heur2” described 
here. At a high level, the heuristic 
assigns a hierarchy of points on the 
meta-board for  

● Winning the center board 
● Winning a corner board 
● Making a move in the center 

board 
● Winning any board 
● Winning any combination of N-1 

boards in a row.  

In addition to this score, the 
heuristic assigns a hierarchy of points 
on each mini-board for  

● Placing a tile in the center  
● Placing any combination of N-1 

tiles in a row.  
The heuristic is symmetric, so the 

opponent receives an equivalent 
negative score for each of these 
features. 

3 Approach 
We used OpenMP to parallelize 

because we wanted to parallelize a 
recursive algorithm. Two intuitive 
approaches to this problem are 
iterating over the children in 
parallel, or creating a pool of shared 
work from each child. We found that 
OpenMP has good support for both these 
approaches in the form of parallel 
for-loops and task abstraction. 
Additionally, since this recursive 
problem space will inherently increase 
exponentially, we decided to experiment 
with keeping portions of the algorithm 
sequential to avoid the overhead of 
managing exponentially growing parallel 
processes. 

3.1 Sequential Alpha-Beta 
Implementation  

In our implementation of alpha-beta 
pruning, each recursive step computes 
the minimax values for the two players. 
At each level of recursion, it is a 
different player’s turn. This means 
that every other call to the function 
tries to maximize the score for the 
current player and all of the other 
turns are trying to minimize the score. 
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First, we collected all of the 
children, which are empty squares 
within the current mini-board. Then, we 
placed a hypothetical tile at one child 
at a time, evaluated the board with the 
heuristic function, and recursed on 
this updated board. After the maximum 
depth, which we specified to be 4, is 
reached, the algorithm returns the move 
that maximizes the maximizing player’s 
score and minimizes the minimizing 
player’s score. We found that 
increasing the max depth beyond 4, and 
therefore creating exponentially more 
child nodes, made the algorithm far too 
slow (parallelized or not). 

The computationally expensive aspect 
of the alpha-beta algorithm is 
iterating through the children and 
making recursive calls on each one. The 
results of the child nodes do not 
affect one another until they return 
and are compared to one another, making 
the computation of the child nodes our 
target for parallelization. 

3.2 “Meta-move” Implementation  
As the rules for “meta” tic-tac-toe 

state, if the player is sent to a 
mini-board where no legal moves can be 
made, they can play in any other 
available mini-board. We called this a 
“meta-move.” In order to account for 
this possibility, we divide heuristic 
calculation into meta-board components 
and mini-board components. Choosing the 
“meta-move” involves computing the 
current meta-board component of the 
heuristic, iterating over all 
incomplete mini-boards on the 
meta-board and then executing 
alpha-beta pruning on the each of these 

mini-boards (using the mini-board 
component of the heuristic). Then the 
function returns the optimal mini-board 
for the current player to choose as 
well as the best move within the 
selected mini-board. 

3.3 Input Size and Number of 
Threads 

We decided to only run our program 
on N = 3 and N = 5. Any board sizes 
larger than this took too long to 
execute. Also, it is best if N is an 
odd number because the heuristic 
function gives weight to making moves 
in the center square, which could not 
be achieved if N were even.  

To best understand the progression 
of speedup, we chose to examine the 
results with 1, 4, 8, 16, 32, and 64 
threads for all cases, both when N = 3 
and when N = 5. Especially for the N = 
3 case, we knew that having more 
threads than possible spaces on the 
meta-board would only lead to increased 
overhead costs with no real benefits. 
However, for some of the N = 5 
experiments, we tested with 128 or 236 
threads when speedup was on an upward 
trend, to see if increasing the level 
of parallelism would improve our 
results. 

3.4 Tasks Approach to 
Parallelization  

A standard approach to parallelizing 
recursive calls is to create a work 
queue for parallel threads. We did this 
using OpenMP’s tasks structure, #pragma 
omp task. For each empty space, we 
defined the work of hypothetically 
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making a move, computing the updated 
heuristic, and recursively executing 
the alpha-beta pruning algorithm as a 
task. These tasks can either be 
executed immediately or be implicitly 
added to a pool for idle threads to 
steal. Since alpha-beta pruning is a 
recursive algorithm, the number of 
queued tasks per level of the 
alpha-beta tree grows exponentially. 
Additionally, this creates a long set 
of parent tasks that do nothing but 
wait for child tasks to return before 
the can do anything. Instead of this, 
we performed alpha-beta pruning 
sequentially after a certain depth is 
reached in the game tree so that a 
greater proportion of threads have 
meaningful work to do, and any idle 
threads can find work in the task pool.  

3.5 Parallel For-Loop Approach 
to Parallelization 

The “meta-move” routine has one 
for-loop that iterates over all 
incomplete mini-boards on the 
meta-board and num_threads threads are 
spawned. This for-loop is parallelized 
using #pragma omp parallel for. In 
addition, each recursive step of the 
alpha-beta pruning function has two 
nested for-loops, which each have N 
steps (to iterate over the NxN grid.) 
Each of these for-loops is also 
parallelized using #pragma omp parallel 
for and num_threads threads are 
spawned. The number of threads spawned 
grows exponentially. Therefore, we 
additionally experimented with limiting 
the number of spawned threads by 
running the recursive calls that are 
lower than a certain depth in the tree 

sequentially. Therefore, parallel 
threads spawned by the upper-level 
calls had substantial work in executing 
these sequential calls, instead of just 
spawning children and waiting for them 
to return.   

4 Results 
In the figures in the appendix, raw 

data is summarized in graphs showing 
the number of moves vs. the total 
computation time to run a complete game 
(until someone wins, or there is a tie 
and there are no more legal moves). 
Each thread count has its own color to 
show where the timings compared to the 
number of moves “cluster”. The average 
speedup is calculated using the average 
time taken by each thread count across 
5 trials. 

4.1 “Partial task queue”: 
Tasks queued until depth < 2 

For a 3x3 board, the speedup graph 
in Figure 5 shows a peak when 8 threads 
are used and for a 5x5 board, there is 
a peak in Figure 3 when 16 threads are 
used. This is because 8 threads is the 
closest number of threads to the board 
size, which is 9. Therefore, there are 
not too many threads such that many of 
them are idle and there is a lot of 
overhead and not too few threads such 
that each thread’s workload becomes 
heavy because it did not queue any 
tasks past a certain depth in the game 
tree. The same goes for 16 threads, 
which is the closest number of threads 
to the 5x5 board size.  
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4.2 “Partial for-loop”: 
For-loops parallelized until 
depth < 2 

Once the recursion depth becomes 
less than 2, which is at the bottom and 
second-to-last level of the game tree, 
we decided the execute the remaining 
alpha-beta pruning sequentially. When N 
= 5 in the parallel-for approach, as 
seen in Figure 7, the speedup dips 
before rising again when there are 4 
threads. This is because there are 4 
threads spawned on the outer for-loop 
and then the inner for-loop. Since 4 is 
less than 5 and 16 is less than 25, the 
16 spawned threads have to stall at the 
implicit wait at the end of the for 
loop before finishing the rest of the 
iterations of the for loops.  

4.3 “Complete for-loop”: All 
for-loops are parallelized  

As in Section 4.2, the speedup for 
N=5 as seen in Figure 11 also dips 
before rising again when there are 4 
threads. However, the dip is less 
severe because each thread has less 
work, and therefore its parent threads 
have to wait for less time. When every 
for-loop is parallelized for every 
level of the game tree, each thread 
does not have the burden of also 
talking on sequential work for the 
children in its subtree. However, this 
approach does not have as good of 
speedup as the approach discussed in 
Section 4.2 because the overhead of 
spawning more threads is larger than 
the actual work each thread 
accomplishes.  

4.4 General Discussion and 
Comparison 

As shown in Figure 3, our algorithm 
achieved a max speedup of 2.78x on a 
5x5 board using Partial Task Queue 
approach. This is because the work pool 
allowed for task stealing amongst 
threads, which decreased the amount of 
idling per thread. In contrast, in the 
parallel for-loops approach, there is 
an implicit wait at the end of each of 
the nested for loops, and threads that 
go idle can’t pick up more work until 
after the wait. 

After completing this project, we 
learned that parallelizing recursive 
functions may not be worth the trouble. 
Since the number of threads spawned 
grows exponentially, the overhead of 
distributing the work and managing all 
of these threads starts to overpower 
the parallelism. We tried to compensate 
for this by running the algorithm 
sequentially and not creating any more 
tasks after a fixed number of recurses.  

4.4.1 Limitations on Speedup  

Our speedup was limited by inherent 
overhead work. This includes finding 
the “children,” or blank tiles on a 
board, at each step, calculating 
heuristic values of game states, and 
dividing work up amongst threads. In 
addition, the maximum problem size was 
a board of 625 tiles with a max 
recursive depth of 4. Thus, our speedup 
was also limited because the ratio of 
problem size to number of threads was 
never very large. And finally, 
parallelism is inherently limited in 
recursive algorithms because at each 
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level, parent nodes must wait for their 
child nodes to return before they can 
do meaningful work. 

4.4.2 CPU v GPU  

In the future, we would experiment 
switching from CPU to GPU because GPUs 
have better throughput and smaller 
caches than CPUs do. Our algorithm does 
not require a lot of memory, so perhaps 
we could gain faster runtimes on a GPU. 
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Figure 3 

Figure 4 
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Figure 5 

Figure 6 
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Figure 7 
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Figure 9 
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Figure 11 
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