
Ultimate Tic-Tac-Toe
15-418 Final Project

Srishti Srivastava and Summer Kitahara
scrabble-bot.weebly.com

1 Abstract
We implemented and parallelized an

algorithm that plays N-dimensional
“ultimate” or “meta” tic-tac-toe
against itself (NxN tic-tac-toe boards
of size NxN running at the same time).
Our algorithm is based on alpha-beta
pruning, which we tried parallelizing
in two different ways using OpenMP.
While we achieved modest speedup, we
discovered that parallelizing such a
heavily recursive algorithm is probably
not worth the effort.

2 Background

2.1 Terminology
● Meta-board: the board overall,

which consists of NxN
“mini-boards” that each are a
tic-tac-toe game of size NxN.

● Mini-board: one of the smaller
tic-tac-toe boards inside the
meta-board. Winning a mini-board
is equivalent to placing your
tile in that space on the
meta-board.

2.2 Rules
“Ultimate” or “meta” tic-tac-toe is

a variation of tic-tac-toe where there
are NxN boards of size NxN running

simultaneously. As shown in Figure 1,
if player X plays in space (i, j) in
the grid at (k, l) on the “meta-board,”
that means that player O must play in
the grid located at (i, j) on the
meta-board. If O is forced to play in
a board that has already been won or
tied, O can instead play anywhere on
the meta-board. Winning a given small
grid serves as placing a tile in the
larger NxN meta-grid. The goal is to
win the overall meta-grid. The game
ends when someone wins or there are no
legal moves to be made (i.e., every
mini-board has been won or tied).

2.3 Randomization
In our version of the rules, player

O always goes first in the following
manner: a grid on the meta board is
randomly selected and then a row and
column within that board is randomly
selected to place the first “O”.
Because of this, the game has a
different outcome every time, and the
number of moves per game varies up to
30 moves for a 3x3 board and 150 moves
for a 5x5 board. This also gives a very
slight advantage to player X, who has
one more optimized move than player O
has.

2.4 Alpha-Beta Pruning
Alpha-beta pruning is a more

efficient optimization of the naive

1

http://scrabble-bot.weebly.com/

minimax algorithm. Minimax is used to
compute the optimal move in two-player
adversarial games by assigning a score
to the current game state using a
heuristic, and then hypothetically
making every possible move recursively.

At each level, minimax alternates
between the optimal move for the
opponent and the least optimal move for
the player. For each hypothetical move,
alpha is updated to be the maximum of
itself and the current move’s heuristic
value if it is the maximizing player’s
turn. Otherwise, it is the minimizing
player’s turn, so beta is updated to be
the minimum of itself and the current
move’s heuristic value. Hypothetically
making these moves generates a tree of
possible paths the game could take.
Alpha-beta pruning shrinks the problem
size by immediately discarding
suboptimal moves (for example, moves
that would result in the player
losing,) and therefore prunes entire
subtrees.

2.5 Heuristic
To quantify the “goodness” of a

particular board state for a particular
player, we modified “heur2” described
here. At a high level, the heuristic
assigns a hierarchy of points on the
meta-board for

● Winning the center board
● Winning a corner board
● Making a move in the center

board
● Winning any board
● Winning any combination of N-1

boards in a row.

In addition to this score, the
heuristic assigns a hierarchy of points
on each mini-board for

● Placing a tile in the center
● Placing any combination of N-1

tiles in a row.
The heuristic is symmetric, so the

opponent receives an equivalent
negative score for each of these
features.

3 Approach
We used OpenMP to parallelize

because we wanted to parallelize a
recursive algorithm. Two intuitive
approaches to this problem are
iterating over the children in
parallel, or creating a pool of shared
work from each child. We found that
OpenMP has good support for both these
approaches in the form of parallel
for-loops and task abstraction.
Additionally, since this recursive
problem space will inherently increase
exponentially, we decided to experiment
with keeping portions of the algorithm
sequential to avoid the overhead of
managing exponentially growing parallel
processes.

3.1 Sequential Alpha-Beta
Implementation

In our implementation of alpha-beta
pruning, each recursive step computes
the minimax values for the two players.
At each level of recursion, it is a
different player’s turn. This means
that every other call to the function
tries to maximize the score for the
current player and all of the other
turns are trying to minimize the score.

2

http://www.cs.huji.ac.il/~ai/projects/2013/UlitmateTic-Tac-Toe/

First, we collected all of the
children, which are empty squares
within the current mini-board. Then, we
placed a hypothetical tile at one child
at a time, evaluated the board with the
heuristic function, and recursed on
this updated board. After the maximum
depth, which we specified to be 4, is
reached, the algorithm returns the move
that maximizes the maximizing player’s
score and minimizes the minimizing
player’s score. We found that
increasing the max depth beyond 4, and
therefore creating exponentially more
child nodes, made the algorithm far too
slow (parallelized or not).

The computationally expensive aspect
of the alpha-beta algorithm is
iterating through the children and
making recursive calls on each one. The
results of the child nodes do not
affect one another until they return
and are compared to one another, making
the computation of the child nodes our
target for parallelization.

3.2 “Meta-move” Implementation
As the rules for “meta” tic-tac-toe

state, if the player is sent to a
mini-board where no legal moves can be
made, they can play in any other
available mini-board. We called this a
“meta-move.” In order to account for
this possibility, we divide heuristic
calculation into meta-board components
and mini-board components. Choosing the
“meta-move” involves computing the
current meta-board component of the
heuristic, iterating over all
incomplete mini-boards on the
meta-board and then executing
alpha-beta pruning on the each of these

mini-boards (using the mini-board
component of the heuristic). Then the
function returns the optimal mini-board
for the current player to choose as
well as the best move within the
selected mini-board.

3.3 Input Size and Number of
Threads

We decided to only run our program
on N = 3 and N = 5. Any board sizes
larger than this took too long to
execute. Also, it is best if N is an
odd number because the heuristic
function gives weight to making moves
in the center square, which could not
be achieved if N were even.

To best understand the progression
of speedup, we chose to examine the
results with 1, 4, 8, 16, 32, and 64
threads for all cases, both when N = 3
and when N = 5. Especially for the N =
3 case, we knew that having more
threads than possible spaces on the
meta-board would only lead to increased
overhead costs with no real benefits.
However, for some of the N = 5
experiments, we tested with 128 or 236
threads when speedup was on an upward
trend, to see if increasing the level
of parallelism would improve our
results.

3.4 Tasks Approach to
Parallelization

A standard approach to parallelizing
recursive calls is to create a work
queue for parallel threads. We did this
using OpenMP’s tasks structure, #pragma
omp task. For each empty space, we
defined the work of hypothetically

3

making a move, computing the updated
heuristic, and recursively executing
the alpha-beta pruning algorithm as a
task. These tasks can either be
executed immediately or be implicitly
added to a pool for idle threads to
steal. Since alpha-beta pruning is a
recursive algorithm, the number of
queued tasks per level of the
alpha-beta tree grows exponentially.
Additionally, this creates a long set
of parent tasks that do nothing but
wait for child tasks to return before
the can do anything. Instead of this,
we performed alpha-beta pruning
sequentially after a certain depth is
reached in the game tree so that a
greater proportion of threads have
meaningful work to do, and any idle
threads can find work in the task pool.

3.5 Parallel For-Loop Approach
to Parallelization

The “meta-move” routine has one
for-loop that iterates over all
incomplete mini-boards on the
meta-board and num_threads threads are
spawned. This for-loop is parallelized
using #pragma omp parallel for. In
addition, each recursive step of the
alpha-beta pruning function has two
nested for-loops, which each have N
steps (to iterate over the NxN grid.)
Each of these for-loops is also
parallelized using #pragma omp parallel
for and num_threads threads are
spawned. The number of threads spawned
grows exponentially. Therefore, we
additionally experimented with limiting
the number of spawned threads by
running the recursive calls that are
lower than a certain depth in the tree

sequentially. Therefore, parallel
threads spawned by the upper-level
calls had substantial work in executing
these sequential calls, instead of just
spawning children and waiting for them
to return.

4 Results
In the figures in the appendix, raw

data is summarized in graphs showing
the number of moves vs. the total
computation time to run a complete game
(until someone wins, or there is a tie
and there are no more legal moves).
Each thread count has its own color to
show where the timings compared to the
number of moves “cluster”. The average
speedup is calculated using the average
time taken by each thread count across
5 trials.

4.1 “Partial task queue”:
Tasks queued until depth < 2

For a 3x3 board, the speedup graph
in Figure 5 shows a peak when 8 threads
are used and for a 5x5 board, there is
a peak in Figure 3 when 16 threads are
used. This is because 8 threads is the
closest number of threads to the board
size, which is 9. Therefore, there are
not too many threads such that many of
them are idle and there is a lot of
overhead and not too few threads such
that each thread’s workload becomes
heavy because it did not queue any
tasks past a certain depth in the game
tree. The same goes for 16 threads,
which is the closest number of threads
to the 5x5 board size.

4

4.2 “Partial for-loop”:
For-loops parallelized until
depth < 2

Once the recursion depth becomes
less than 2, which is at the bottom and
second-to-last level of the game tree,
we decided the execute the remaining
alpha-beta pruning sequentially. When N
= 5 in the parallel-for approach, as
seen in Figure 7, the speedup dips
before rising again when there are 4
threads. This is because there are 4
threads spawned on the outer for-loop
and then the inner for-loop. Since 4 is
less than 5 and 16 is less than 25, the
16 spawned threads have to stall at the
implicit wait at the end of the for
loop before finishing the rest of the
iterations of the for loops.

4.3 “Complete for-loop”: All
for-loops are parallelized

As in Section 4.2, the speedup for
N=5 as seen in Figure 11 also dips
before rising again when there are 4
threads. However, the dip is less
severe because each thread has less
work, and therefore its parent threads
have to wait for less time. When every
for-loop is parallelized for every
level of the game tree, each thread
does not have the burden of also
talking on sequential work for the
children in its subtree. However, this
approach does not have as good of
speedup as the approach discussed in
Section 4.2 because the overhead of
spawning more threads is larger than
the actual work each thread
accomplishes.

4.4 General Discussion and
Comparison

As shown in Figure 3, our algorithm
achieved a max speedup of 2.78x on a
5x5 board using Partial Task Queue
approach. This is because the work pool
allowed for task stealing amongst
threads, which decreased the amount of
idling per thread. In contrast, in the
parallel for-loops approach, there is
an implicit wait at the end of each of
the nested for loops, and threads that
go idle can’t pick up more work until
after the wait.

After completing this project, we
learned that parallelizing recursive
functions may not be worth the trouble.
Since the number of threads spawned
grows exponentially, the overhead of
distributing the work and managing all
of these threads starts to overpower
the parallelism. We tried to compensate
for this by running the algorithm
sequentially and not creating any more
tasks after a fixed number of recurses.

4.4.1 Limitations on Speedup

Our speedup was limited by inherent
overhead work. This includes finding
the “children,” or blank tiles on a
board, at each step, calculating
heuristic values of game states, and
dividing work up amongst threads. In
addition, the maximum problem size was
a board of 625 tiles with a max
recursive depth of 4. Thus, our speedup
was also limited because the ratio of
problem size to number of threads was
never very large. And finally,
parallelism is inherently limited in
recursive algorithms because at each

5

level, parent nodes must wait for their
child nodes to return before they can
do meaningful work.

4.4.2 CPU v GPU

In the future, we would experiment
switching from CPU to GPU because GPUs
have better throughput and smaller
caches than CPUs do. Our algorithm does
not require a lot of memory, so perhaps
we could gain faster runtimes on a GPU.

5 References
http://www.cs.huji.ac.il/~ai/projects/2
013/UlitmateTic-Tac-Toe/

https://en.wikipedia.org/wiki/Ultimate_
tic-tac-toe

http://www.openmp.org/wp-content/upload
s/OpenMP3.0-SummarySpec.pdf

https://en.wikipedia.org/wiki/Alpha%E2%
80%93beta_pruning

https://docs.oracle.com/cd/E19205-01/82
0-7883/6nj43o69j/index.html

6 Total Distribution of
Credit
Summer Kitahara - 51%
Srishti Srivastava - 49%

6

http://www.cs.huji.ac.il/~ai/projects/2013/UlitmateTic-Tac-Toe/
http://www.cs.huji.ac.il/~ai/projects/2013/UlitmateTic-Tac-Toe/
https://en.wikipedia.org/wiki/Ultimate_tic-tac-toe
https://en.wikipedia.org/wiki/Ultimate_tic-tac-toe
http://www.openmp.org/wp-content/uploads/OpenMP3.0-SummarySpec.pdf
http://www.openmp.org/wp-content/uploads/OpenMP3.0-SummarySpec.pdf
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning
https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html
https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

Appendix A: Graphics

Figure 1

Figure 2

7

Figure 3

Figure 4

8

Figure 5

Figure 6

9

Figure 7

10

Figure 8

Figure 9

11

Figure 10

Figure 11

12

Figure 12

Figure 13

13

