

Srishti Srivastava (srishtis)

Summer Kitahara (skitahar)

15-418

Scrabble Bot
Project Proposal

Website

http://scrabble-bot.weebly.com

Summary

We are going to create a bot for a 3D variation of Scrabble that computes the

best move possible in parallel. For our implementation, we will use OpenMP and run on

the Xeon Phi’s on the latedays cluster.

Background

Scrabble is a popular board game where each player takes turns placing tiles with a

letter and variable number of points on a board to form a word. We aim to create a

bot to play a three-dimensional extension of Scrabble, referred to as Upwords, where

players can also stack letter tiles on top of each other to replace letters in words

on the board. The compute-intensive aspect for the bot is finding the best set of

letter tiles to place on the board. Therefore, we will focus on parallelizing this

aspect. We already have a serial implementation of “Scrabble With Stuff” from 15-214

to work from, which will make our project more manageable for the six week time

frame.

http://scrabble-bot.weebly.com/

The Challenge

The basic Scrabble problem is challenging because there are many rules and variables

for an AI to manage when coming up with the best move. For instance, the word and its

placement must be valid, it must overlap with an existing word, it must maximize the

point values of the letters and it must take advantage of any possible power-ups,

like double word score, on the board. The 3D Upwords extension also has the added

wrinkle of stacks of letters in certain places on the board to overwrite letters to

create another valid word. These stacks have point values that must be stored

intelligently to avoid computing their scores over and over.

From a parallelization point of view, we anticipate that it will be tricky to manage

memory and cache misses because optimal words can be found anywhere on the board, so

there is limited data locality. Also, the number of potential moves increase

exponentially as the number of words played on the board increase. Finally, the

playable letters held by the AI keep changing so the benefits to storing past

computations of best moves are somewhat limited.

We expect there to be an interesting trade-off between communication and computation.

On one hand, if multiple threads are computing optimal moves for a given board state,

it might be valuable to store portions of these computations in global memory for

other threads to use to avoid inefficient recomputation. On the other, communication

overhead might be too high and it might be more advantageous for each thread to just

recompute the scores of previously-seen moves. Additionally, managing workloads

across threads may be an interesting problem because some potential words will

interact much more heavily with the existing board state than others

Goals and Deliverables

Planned Goals

Because we have starter code, including a sequential algorithm and basic GUI from the

15-214 “Scrabble With Stuff” assignment, we believe we can reach our milestones. We

hope to first implement a sequential 2D Scrabble by translating our starter Java code

to C/C++. Then we will parallelize our Scrabble implementation by computing all

possible moves the AI can take in parallel. We hope to attain 30x speedup, similar to

the speedup achieved in Assignment 3, which has a similar problem space using OpenMP

on the latedays clusters. While continuing to optimize our parallel solution, we will

also take the basic Java GUI from the “Scrabble With Stuff” assignment and modify it

as we see fit. Then, we will link it to our C/C++ code. After this, we will extend

our parallel implementation to work on a 3D version of Scrabble, Upwords, and also

add this to our GUI. Lastly, we will make our poster to show off our Scrabble bot.

Stretch Goals

Beyond 3D Upwords implementation, we may add additional features, rules, and

power-ups. Or we could extend our solution to other grid-based games.

Demo

On December 12, we will show our project by having an interactive demo where people

can challenge our bot in Scrabble.

Platform Choice

We choose to use the latedays cluster. We will use OpenMP to write the parallel

implementation and Java for the graphical user interface. We think the board size and

data will be relatively small so it will be safe to store in local memory. We are not

using message passing, because it would be expensive to pass the board around, and

only sending the best score wouldn’t be worth the overhead. Similarly, we chose to

not use CUDA because dealing with passing board information between global and device

memory will also generate additional overhead costs and the board is small anyway.

Schedule

Week 1 (10/30 - 11/5)

Submit project proposal on 11/1.

Week 2 (11/6 - 11/12)

Have sequential Scrabble algorithm working.

Week 3 (11/13 - 11/19)

Take a first pass at parallelizing Scrabble.

Week 4 (11/20 - 11/26)

Touch up GUI from 15-214. Link GUI to output from our C/C++ code. Continue to

optimize our parallel algorithm. We hope to attain 30x speedup, similar to the

speedup achieved in Assignment 3, which has a similar problem space using OpenMP on

the latedays clusters.

Week 5 (11/27 - 12/3)

Finish 3D Upwords. Stretch goal to add additional rules and features to our 3D

Scrabble variation.

Week 6 (12/4 - 12/12)

Spruce up GUI and present poster.

